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Abstract. The temporal evolution of disorder around grain boundaries between domains of
ideally six-fold coordinated two-dimensional foam has been studied experimentally, using a foam
comprising bubbles bridging between a soap solution and a cover glass. The disorder, quantified
by the second central moment of the distribution of topological classes of the cells(µ2), generally
increases. In certain cases, in which the evolution can be followed over longer times,µ2 eventually
falls. This may be connected with the transient peaks forµ2 found in previous studies of relatively
ordered soap froths. The absolute values ofµ2 depend upon the boundary conditions imposed upon
the foam, a rigid wall leading to higher values than a deformable boundary. The disorder about
the grain boundaries propagates into the adjacent regions of ordered foam with constant speed, the
roughness of the interface increasing with time.

1. Introduction

There has been a resurgence of interest in the physics of foam, particularly as a model of
disordered systems [1, 2]. While the situation is changing as the structure and dynamics of
three-dimensional foam becomes more accessible to various probes [3–5], and computers
become more powerful, there has been a historical tendency to study the 2D case as more
accessible to both experimental and computational investigation. Much interest has focused
on the temporal evolution of 2D foam as it coarsens. This evolution in 2D proceeds via various
basic topological processes [1], of which neighbourhood switching(T1) and the disappearance
of small (usually three-sided) cells(T2) are the only ones of present concern. Coarsening in
2D foam as described by von Neumann’s law,

dA

dt
= k(n− 6) (1)

is due to the diffusive exchange of gas from small to large cells. Heren is the number of
neighbours (n is also referred to as the topological class of the cell) andA the area of a given
cell. Here we focus on the evolution in one specific situation: foam containing a grain boundary
between two areas of ideal foam.

In its temporal evolution 2D foam has been found to reach a stationary scaling state at long
times in which the topological disorder quantified byµ2, the second central moment of the
distribution ofn, becomes independent of the initial state of the system [6]. While an initially
disordered 2D foam makes a smooth transition to this final state,µ2 for a foam which is initially
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rather ordered passes through a transient peak before reaching the apparently universal limiting
value. The origin of this initial transient has been a matter of some recent interest: in a 2D foam
with a small but non-vanishing degree of disorder most cells will haven = 6, but for non-zero
µ2 there must be defects in the system, for whichn 6= 6. These will comprise point defects
(dislocations and bubbles large or small enough that they are not hexagonally coordinated)
and larger areas of disorder, including grain boundaries. Various recent simulations [7–9]
and experiments [10, 11] have concentrated on the evolution of disorder around single point
defects in otherwise ideally six-fold coordinated foams. It is found that for such isolated
defectsµ2 of the area of disorder about the original defect increases monotonically with time,
never exhibiting the peak seen in the early evolution of the relatively ordered foam [6]. Certain
maxima found experimentally appear attributable to artefacts. However, when two or more
spatially separated dislocations are introduced into an ideal foam,µ2 does seem to show a real
maximum in its temporal evolution [11], arising from the interaction of the growing areas of
disorder about the separate initial defects. There is, therefore, some interest in the evolution
of grain boundaries, which present a linear array of spatially separated dislocations (each
comprising a bound pair of five- and seven-coordinated cells).

There are only limited data on this point: brief references in experimental and simulation
studies state that the area of disorder along the grain boundary spreads into the ordered regions
of foam, a gradient of cell size developing normal to the line of the boundary [6, 12]. Some
data of rather limited precision have been reported [13] for a boundary between two ordered
domains in a model 2D foam resembling that used in the present work. We present more
comprehensive data from a series of experiments on the evolution of various types of grain
boundary in otherwise ideal two-dimensional foam. We concentrate on such issues as the
increase of disorder in foam around the different types of boundary, the effect of different
boundary conditions imposed upon the foam and of the angular mis-orientation of the domains
of ideal foam adjacent to the boundaries. We also consider the propagation of the disordered
region into the ordered foam, leading us to investigate the width and roughness of the interfaces.

Our model 2D foam comprises bubbles bridging between the surface of a soap solution
and a glass cover plate a few mm above the solution. This cover glass prevents loss of gas
from the bubbles to the atmosphere so that the raft of bubbles has an essentially indefinite life,
allowing its evolution to be studied over extended times. The sessile bubbles are flattened by
buoyancy, causing the raft to be of almost constant thickness, making it a good model of a 2D
foam. No bubbles ever move into the third dimension during our experiments.

While there have been previous studies of grain boundaries in bubble rafts [14], these have
had a very different focus from the present work. They entirely concerned the modelling of
grain boundaries in materials, building on the pioneering use of the bubble raft as a 2D crystal
analogue [15], rather than the present concern with the evolution of the bubblesper se.

2. Methods

We have studied three types of grain boundary: one (referred to as a grain boundary loop)
surrounding a lattice-like domain mis-orientated with respect to the foam occupying the rest
of the cell, the second comprising a quasi-linear boundary between two areas of foam having
different bubble sizes (‘incommensurate grain boundary’) and finally relatively low angle
grain boundaries between areas of ideal foam. Here we describe the creation of these grain
boundaries.

The first two types were made in the same cell as used in our previous studies [10, 11, 16]:
a metal plate some 1 cm thick and containing a hexagonal hole 6 cm on a side was placed in a
soap solution so that its upper surface was 2–3 mm above the liquid, and covered with a glass
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plate. N2 gas was then bubbled into the cell through a long hypodermic needle; by sweeping
the needle to and fro ideally hexagonal foam could be generated. Any dislocations occurring
in otherwise ideal foam could be removed by manipulation [11]. The cell was placed upon a
light box to allow photography of the foam at various stages of its evolution.

To make a grain boundary loop, a belt of ideal foam was formed around the cell walls,
some five to seven bubbles wide. An isolated patch of ideal foam was then generated in the
centre of the cell. As more bubbles were added, this patch spread towards the foam lining the
walls. Bubbling N2 was stopped just as the two areas of foam came into contact.

Due to the symmetry of the hexagonal cell it was not possible to form separate mis-
orientated areas of ideal foam. Apart from the loops just described, the only grain boundary
which could be formed was thus between foams comprising different size bubbles. The cell
was first approximately half filled with uniform foam of bubbles of one size, then the rest
was filled with bubbles of a different size using a hypodermic needle of different gauge. The
number of dislocations in the boundary increased with the size difference between the bubbles;
a very small difference led to a curved interface rather than a line of dislocations.

Creation of a grain boundary between mis-orientated areas of ideal foam requires a
modified approach. A cell is needed in the form of a distorted hexagon, each half being a
quadrilateral with base angle 120◦, these parts being slightly mis-orientated with respect to
each other (figure 1). The cell comprised a Perspex base in which were set six brass pegs round
which a large rubber band could be stretched to define the area of the foam. Three of the pegs
could be moved to yield different degrees of mis-orientation (0, 4.5 and 8.9◦). The method of
forming grain boundaries in this cell was as described above for the incommensurate case.

Figure 1. A diagram of the cell for creation of low angle grain boundaries. Of the six points
indicated, three (D–F) can be moved so that the two halves of the cell make an angle of 8.9◦ (dotted
line), 4.5◦ (dashed line) or zero (full line).

Unlike the previous cell, in which the foam encounters a rigid boundary, the boundary
of this new cell was deformable. We believe that the different boundary conditions (referred
to below as ‘hard’ and ‘soft’) imposed by the two cells underlie certain differences in the
behaviour of the foam to be described below.

3. Results and discussion

We first present data concerning the growth of disorder around the initial grain boundaries.
We subsequently turn to the roughening of the boundaries.
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3.1. Topological disorder

As is conventional, we define the degree of disorder via the second central moment(µ2) of
the distribution of the numbers of neighbours (P (n)) of the bubbles in a ‘cluster’ of bubbles
about the original defect [7, 8, 10, 11]. Here we consider the line of dislocations forming the
grain boundary as a single defect. The cluster is defined as that set of bubbles around the
dislocations which have at least one neighbour which is not six-fold coordinated, plus the
belt of six-coordinated bubbles separating the dislocations along the line. This definition is
somewhat arbitrary (see [8] for an alternative definition for an isolated defect), and consequently
the absolute values ofP (6) andµ2 reported here are not very significant in themselves. We
thus focus upon the temporal changes of these statistics.

Increasing disorder first appeared around the original dislocations defining the grain
boundary some 10–13 hours after formation of the foam and grew due to coarsening (figure 2).
The disorder propagated outwards in time, as for point defects [7, 10, 11]. As the grain boundary
evolved a gradient of cell size developed in the direction of spreading. The bubbles were
generally largest along the original line of dislocations, although due to the wetness of our
foam (which leads to a lack ofT2 processes [10, 11]) a number of small bubbles persisted
adjacent to the largest bubbles (see figure 2). This general behaviour accords with that found
in simulations [12], and in earlier experiments [6, 13].

Figure 2. Pictures of a typical evolving foam having an incommensurate grain boundary: (a) as
formed, containing 16 dislocations (t = 8 h); (b)–(d) after (b)t = 15, (c)t = 26 and (d)t = 35 h.
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The time over which we could follow the growth of disorder was limited by the appearance
of generalized disorder in different areas of the foam, over time scales of the order of days
(evident in figure 2(d)), due to coarsening of the 2D foam arising from inevitable tiny differences
in the size of the ‘ordered’ bubbles in the body of the foam. Eventually the cluster grew into
this coarsening-induced disorder; all the data presented here relate to times before this occurs.

As in previous studies [10, 11], we use the number of bubbles in the cluster(nc) as the
independent variable, instead of time. This helps to obviate certain empirical fluctuations. (nc
varied relatively smoothly with time in all experiments.) The actual rate of growth of the cluster
differs from case to case. For example, for both incommensurate and loop grain boundaries
the rate of evolution of the cluster could be varied experimentally. By inserting more bubbles
in one area of the foam (creating more dislocations) the foam was made more compact, so
that the liquid films between the bubbles were thinner, allowing more rapid evolution and the
faster appearance of disorder.

3.1.1. Incommensurate grain boundaries.Figure 2 shows a typical example of the evolution
of an incommensurate grain boundary. After 8–10 hours, during which time no great change
was observed, disorder increased around the initial dislocations. Figure 3 shows the distribution
of the topological classes of the bubbles in the cluster and its evolution for a rather compact
foam. Initially all the bubbles in the cluster, except the five- and seven-coordinated ones
defining the dislocations, haven = 6, but with timeP(6) falls andP(n) extends to larger and
smallern; the peak of the distribution, however, remains atn = 6. The general features of
theseP(n) resemble those observed for foam evolving about point defects [10, 11]. However,
they differ from those for many 2D cellular networks: in particularP(6) is always relatively
high and we observe a significant population atn = 3. These three-coordinated bubbles are
very small, and tend to lie around large bubbles. The disappearance of these small bubbles via
theT2 process is somewhat inhibited by the slow diffusion of N2 from them to their neighbours
due to the small area of contact [10, 11].

Figure 3. Topological class distributions for foam containing an incommensurate grain boundary.
Times are as in the legend.
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The increase in disorder reflected by the widening ofP(n) can be characterized through
the temporal evolution ofµ2, shown in figure 4 for three grain boundaries with different initial
numbers of dislocations.µ2 increases to rather high values, but it ultimately decreases. The
larger the initial number of dislocations, the higher the peak value ofµ2. This does not appear
to be a very fundamental property, but rather results from the arbitrary nature of the cluster:
for fewer dislocations in the grain boundary the belt of six-coordinated bubbles makes a larger
contribution to the initialP(n), reducing the values ofµ2. Bubbles in this belt do not evolve
to such levels of disorder as those about the dislocations.

Figure 4. The evolution ofµ2 with nc for foams with incommensurate grain boundaries having
different initial numbers of dislocations (see the legend). See the text for a discussion.

It has recently been argued [13] that peaks inµ2 such as those seen in figure 4 (and, by
implication, that seen as relatively ordered foam evolves to the scaling state [6]) arise from
the interaction of growing clusters of disorder about separated dislocations. In fact for these
grain boundaries the observed peaks occur long after the time when the regions of disorder
growing about individual dislocations impinge upon each other. To what can the eventual
decrease be ascribed? For single isolated defects such maxima seem to be artefacts of the
wetness of the foam, arising due to the ultimate disappearance of the small three-coordinated
bubbles. However, as for spatially separated dislocations [11], this does not seem to be the
case for these grain boundaries; indeed the absolute number of such bubbles grows in some
cases, those which disappear being replaced from the population of four- and five-coordinated
bubbles. RatherP(n) is decreased at its extremes, while the central peak for 56 n 6 8
broadens as the foam coarsening leads to a more generally disordered state.

These observations are in general agreement with the growth of disorder about dislocations
[11], both isolated and in groups (bound pairs or spatially separated).µ2 attained a rather small
value for a single dislocation, a larger one for a bound pair of dislocations and a still higher
transitory peak value when two dislocations were spatially separated, the latter effect arising
from the interaction between the growing clusters about the two dislocations. For the grain
boundaries, having several separate dislocations, the peak value ofµ2 is comparable to or
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higher than that found previously for spatially separated dislocations [11].

3.1.2. Grain boundary loops. Figure 5 shows a typical example of a foam containing a
loop grain boundary and its evolution. As before, the peak ofP(n) (data not shown) was
always atn = 6, the tail of the distribution extending to largern as time progresses. In
this caseµ2 increases monotonically (figure 6), reaching values comparable to those seen for
incommensurate grain boundaries containing many dislocations, but not showing the eventual
decline seen for that system. We believe that the latter difference arises from the experimental
cut-off as the cluster evolves into regions of generalized disorder (figure 5(d)). For loop grain
boundaries this happens relatively early because the loop is always rather close to the periphery
of the cell, from where such external disorder frequently appears.

Figure 5. Images of a 2D foam containing a loop grain boundary (a) as formed and (b)–(d) after
(b) 16, (c) 24 and (d) 36 h. Between (c) and (d) a region of generalized disorder has grown into the
evolving cluster around the grain boundary, terminating the analysis.

A few general observations are relevant. The loop grain boundaries are generally
polyhedral in shape, so that they comprise various lines of different mis-orientation between
the inner and outer ordered regions of foam. It is significant that the growing disorder is very
similar on all sides of the loop (e.g., figure 5(c)), indicating that the angle of mis-orientation
does not really affect the evolution of disorder in the foam. Again, as mentioned in section 2,
the bubbles inside and outside the boundary are similar in size. The similar general behaviour
to that for the incommensurate grain boundaries discussed above suggests that the difference
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Figure 6. The temporal variation ofµ2 for three different foams containing loop grain boundaries.
See the text for a discussion.

in bubble size in the latter does not affect the evolution of disorder very significantly. We
conclude that the major influence leading to large absolute values ofµ2 is the presence of
many dislocations along the grain boundary. This is not entirely surprising, as the cluster (as
defined here) about a grain boundary with few dislocations will contain many ‘spectator’ six-
coordinated bubbles in the belt joining the dislocations. As we have seen above such bubbles
act to preventµ2 from rising too far by keepingP(6) high.

3.1.3. Low angle grain boundaries.Figure 7 illustrates the evolution of a grain boundary
between mis-orientated arrays of bubbles of different sizes. The degree of disorder is manifestly
relatively low compared to that for the incommensurate grain boundaries described above (cf
figure 2). We recall that the low angle grain boundaries are formed in a soft-sided cell, rather
than the rigid cell used for the earlier types, and ascribe the differences in the evolution of
disorder to this fact. Indeed, we observe similarly low degrees of disorder for foams in the soft
cell even when the angle of mis-orientation is zero, leading to a grain boundary essentially just
like the incommensurate cases treated above.

The topological class distributions (data not shown) confirmed this impression of relatively
low disorder,P(6) (a measure of the degree of order) always remaining rather high compared
to those of figure 3. The evolution ofµ2 (figure 8) thus differed from the previous variations,
the increase reaching only rather modest values. No terminal decrease ofµ2 is observed, and
it may be that the observed values are tending to saturate (more apparent when plotted versus
time, rather thannc [17]).

The temporal variation ofµ2 does not depend to any great extent upon the mis-orientation
involved (figure 8), confirming the inference drawn above from the loop grain boundaries that
changes in this angle have little or no effect upon the growth of disorder about the boundary.

We attempted to study the evolution of a low angle grain boundary separating ordered
areas of foam comprising equal-sized bubbles. Unfortunately there was no growth of disorder
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Figure 7. A typical foam with a low angle grain boundary between areas of ideal coordinated
bubbles of different sizes for times (a) 0, (b) 22, (c) 34 and (d) 42 h.

about the grain boundary. Rather we observed an eventual relaxation of the entire system,
in which cracks appeared at various points throughout the foam. The time scale for this to
happen—over 24 h—was consistent with that for coarsening of the foam (i.e., the appearance
of generalized disorder, as already discussed). We do not fully understand this phenomenon,
but it clearly derives from the different boundary conditions imposed upon the foam in the soft
cell, as the loop grain boundary involves equal-sized bubbles, but does display a more normal
evolution pattern.

3.2. Comparison between rigid and soft cells

Why does foam reach a higher degree of disorder in the rigid cell than in the soft cell? As
we have noted, differences in either the grain boundary angle or the bubble size cannot
be responsible, as shown by the similarity of the values ofµ2 achieved in the loop and
incommensurate grain boundaries. The difference must lie in the cells themselves. The cells
were of different sizes, the soft one being some 10 cm on a side, whereas the rigid one was
6 cm. However, experiments with a 10 cm rigid cell showed exactly the behaviour shown here
for the smaller cell. We are thus left with the different boundary conditions themselves.

Our foams are in a state of homogeneous tension due to inter-bubble attraction [16]; the
walls exert a further attraction upon the nearest few layers of bubbles. Unlike the rigid walls of
the first cell, the periphery of the soft cell, being made of an elastic material, can yield and de-
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Figure 8. The evolution ofµ2 for six low angle grain boundaries. The various symbols indicate
different values of angular mis-orientation 0◦ (◦), 4.5◦ (�) and 8.9◦ (4). See the text for a
discussion.

form in response to this tension. In particular, evolution of the foam (along the grain boundaries
and, to a lesser extent, elsewhere in the foam) will modify this tension, as bubbles grow and
shrink, and the soft periphery can adapt to such changes, effectively reducing the magnitude
of the overall tension. This apparently somewhat inhibits the tendency to further evolution.

These differences between the two cases serve to point up the difficulty of forming a
model which adequately mimics a real physical system. In real foam of any appreciable extent
a given sub-set of bubbles would presumably correspond more closely to our ‘soft’ boundary
conditions than to the ‘hard’ ones applicable to most of our work, as the surrounding foam
could expand or contract in response to changes in the sample sub-set. Such an explanation
probably explains why the maximal values ofµ2 found in a previous experimental study of
the evolution of grain boundaries [13] were rather low(∼1.3); the grain boundary studied in
that work looks as if it spanned only a fraction of the entire foam.

These things are simpler for computer simulations, in which the use of periodic boundary
conditions may remove such boundary effects. However, in the only computer simulation
which addressed grain boundaries in foam [12], periodic boundary conditions were not
imposed, but rather the foam was surrounded by a rigid boundary. The initial state comprised
a continuous line of dislocations in a polydisperse array of hexagonal cells, introduced through
a series ofT1 processes. Whileµ2 referred to the entire foam, the disorder around the ‘grain
boundary’ filled the foam sample in the final state, so that it may not be very incorrect to compare
that value ofµ2 with the present data for the cluster of disorder about the incommensurate grain
boundaries. The final value ofµ2 given by [12] is 3.24, which is clearly rather similar to the
peak values found here for incommensurate grain boundaries comprising many dislocations.
Too much weight should not be attached to this agreement, based as it is on a single simulation
run. However, it does suggest that further simulations comparing the consequences of both
rigid and periodic boundary conditions could be enlightening.
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3.3. Roughening of grain boundaries

We turn to considerations of the propagation of the interfaces between the ordered foam
domains and the region of disorder about the grain boundary. Many such propagating interfaces
display fractal roughening [18]. We briefly outline current approaches to these matters. An
interface can be reduced to the set{i}(i 6 L) of points which lie furthest into the hitherto
unperturbed medium (this removes any arbitrariness due to the interface folding back upon
itself—cf the lower edge of the grain boundary in figure 2(c)). The height of the interface
at time is defined as the average overi of the distanceh(i) of that point from its starting
position: 〈h(t)〉. For a constant rate of propagation of the disturbance generating the interface
〈h(t)〉 ∝ t . The roughening is quantified via the width of the interface, defined as the standard
deviationw(L, t) =

√
〈[h(i, t)− 〈h(t)]2〉.

In the present case the area of disorder grows into two adjacent homogeneous media, and
so we defineh as the transverse distance between the two bubbles adjoining opposite sides of
the cluster. The number of such bubbles along the interface across the cell is taken asL. For
linear grain boundaries in both hard and soft cells we find that〈h(t)〉 increases linearly witht
(figure 9), although the absolute values differ in the two cases, as is apparent from figures 2 and
7. (In this case we use real time rather thannc.) Thus the disorder about the grain boundaries
propagates into the ordered foam with constant velocity, as is commonly found for many other
instances of interfacial growth [18].

Figure 9. The variation of the height〈h(t)〉 with time for an incommensurate grain boundary (•)
and for a low angle grain boundary (◦).

The roughnessw(L, t) only increases after an initial transient decrease (figure 10). The
latter is a consequence of the discrete cellular nature of our medium.h(i, t = 0) for the initial
interface (as defined above) defining the grain boundary is constant except at the positions
of the defining dislocations. The standard deviation ofh(i, t) falls as fluctuations of bubble
size appear between the dislocations, roughening the belt of six-coordinated bubbles in these
regions. The subsequent growth is broadly in line with the increasing width seen in other
systems. For clarity we only show data for one type of grain boundary. For the low angle case
the general form of the variation was as shown for the incommensurate grain boundary, the
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Figure 10. The variation of the roughnessw(L, t) for an incommensurate grain boundary. Data
are shown for various samples of lengthL (L = 60, full length,•; L = 32,◦; 16,×; 8, +).

absolute values being somewhat lower, as expected.
For a self-affine interfacew(L, t) exhibits various scaling behaviours with bothL andt

[18]. We have considered these matters, averagingw(L, t) for lengthsL = 32, 16 and 8 over
all possible correlated intervals [x, x +L]. However, whilew(L, t) does vary with bothL and
t (figure 10), in a manner reminiscent of certain self-affine systems exhibiting scaling [19], the
present ranges of both parameters are too limited to enable us to ascertain scaling behaviour
with any confidence. We therefore do not dwell upon these details.

4. Conclusions

We have investigated the evolution, both topological and spatial, of grain boundaries in
monolayer foams. The results of both aspects are more comprehensive than the experimental
data previously available [6, 13]. In all cases the 2D foam about the grain boundary evolves
towards increasing disorder, as expected. For one specific system—the incommensurate grain
boundary—the results are generally very similar to those from an earlier study of 2D foam
containing several spatially separated dislocations [11]. Perhaps surprisingly, the evolution of
those foam properties studied here did not seem to be strongly affected by differences in the
angular mis-match and in bubble size between the two domains of ordered foam adjoining the
grain boundary. We believe that the maxima inµ2 observed in figure 4 are intrinsic to the
evolution, rather than an artefact as for point defects [11]; this may connect with the transient
peak inµ2 found in the coarsening of relatively ordered 2D foam [6].

The major surprise of the topological part of this study is the quantitatively different
behaviours observed for foams in the two cells used. Certain comparisons with previous
studies [12, 13] support these differences. However, as has been remarked, they also serve
to emphasize the difficulty of finding model systems which properly reproduce all features
of the behaviour of a real physical system. In the present case, as noted above, the absolute
values forµ2 observed for soft boundary conditions may be more appropriate to those found
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in ‘normal’ 2D foam [6]. This observation may suggest that studies of the evolution of point
defects [10, 11, 13] might more appropriately use such a cell.

The propagation of the disorder into the ordered domains of foam adjoining the grain
boundaries, and the roughening of the front between the two regions, is much as expected.
While scaling of the roughening might be expected, we cannot test this hypothesis as the data
do not extend to long enough times and the size of the sample is too small. While this aspect of
the data is probably irrelevant to the physics of foam, it could provide an interesting example
of a roughening system.
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